LOGARITMO:
HISTORIA:
El método de cálculo mediante logaritmos fue propuesto por primera vez, públicamente, por John Napier (latinizado Neperus) en 1614, en su libro titulado Mirifici Logarithmorum Canonis Descriptio. Joost Bürgi, un matemático y relojero suizo al servicio del duque de Hesse-Kassel, concibió por primera vez los logaritmos; sin embargo, publicó su descubrimiento cuatro años después que Napier. La inicial resistencia a la utilización de logaritmos fue cambiada por Kepler, por el entusiasta apoyo de su publicación y la impecable y clara explicación de cómo funcionaban.
Este método contribuyó al avance de la ciencia, y especialmente de la astronomía, facilitando la resolución de cálculos muy complejos. Los logaritmos fueron utilizados habitualmente en geodesia, navegación marítima y otras ramas de la matemática aplicada, antes de la llegada de las calculadoras y computadoras. Además de la utilidad en el cálculo, los logaritmos también ocuparon un importante lugar en las matemáticas más avanzadas; el logaritmo natural presenta una solución para el problema de la cuadratura de un sector hiperbólico ideado por Gregoire de Saint-Vincent en 1647.
Napier no usó una base tal como ahora se entiende pero, sus logaritmos, como factor de escala, funcionaban de manera eficaz con base 1/e. Para los propósitos de interpolación y facilidad de cálculo, eran útiles para hallar la relación r en una serie geométrica tendente a 1. Napier escogió r = 1 - 10−7 = 0,999999 (Bürgi eligió r = 1 + 10−4 = 1,0001). Los logaritmos originales de Napier no tenían log 1 = 0, sino log 107 = 0. Así, si N es un número y L es el logaritmo, Napier calcula: N = 107(1 − 10−7)L. Donde (1 − 10−7)107 es aproximadamente 1/e, haciendo L/107 equivalente a log1/e N/107.
Inicialmente, Napier llamó "números artificiales" a los logaritmos y "números naturales" a los antilogaritmos. Más tarde, Napier usa la palabra logaritmo en el sentido de un número que indica una proporción: λόγος (logos) el sentido de proporción, y ἀριθμός (arithmos) significado número, y se define, literalmente, como «un número que indica una relación o proporción». Se refiere a la proposición que fue hecha por Napier en su "teorema fundamental", que establece que la diferencia de dos logaritmos determina la relación de los números a los cuales corresponden, de manera que una progresión aritmética de logaritmos corresponde a una progresión geométrica de números. El término antilogaritmo fue introducido a finales de siglo XVII y, aunque nunca se utilizó ampliamente en matemáticas, perduró en muchas tablas, hasta que cayó en desuso.
Definición: Dado un número real (argumento x), la función logaritmo le asigna el exponente n (o potencia) a la que un número fijo se ha de elevar para obtener dicho argumento. Es la función inversa de b a la potencia n. Esta función se escribe como: n = logb x, lo que permite obtener n.
(esto se lee como: logaritmo en base "b" de "x" es igual a "n"; sí y sólo si "b" elevado a la "n" da por resultado a "x")
- La base b tiene que ser positiva y distinta de 1
.
- x tiene que ser un número positivo
.
- n puede ser cualquier número real
.
Así, en la expresión 102 = 100, el logaritmo de 100 en base 10 es 2, y se escribe como log10 100 = 2.
IDENTIDADES LOGARITMICAS:
Los logaritmos mantienen ciertas identidades aritméticas muy útiles a la hora de realizar cálculos:
- El logaritmo de un producto es igual a la suma de los logaritmos de los factores.
- El logaritmo de un cociente es igual al logaritmo del numerador menos el logaritmo del denominador.
- El logaritmo de una potencia es igual al producto entre el exponente y el logaritmo de la base de la potencia.
- El logaritmo de una raíz es igual al producto entre la inversa del índice y el logaritmo del radicando.
En realidad la tercera y cuarta identidad son equivalentes, sin más que hacer:
Cambio de base:
Son comunes los logaritmos en base e (logaritmo neperiano), base 10 (logaritmo común), base 2 (logaritmo binario), o en base indefinida (logaritmo indefinido). La elección de un determinado número como base de los logaritmos no es crucial, ya que todos son proporcionales entre sí. Es útil la siguiente fórmula que define al logaritmo de x en base b (suponiendo que b, x, y k son números reales positivos y que tanto "b" como "k" son diferentes de 1):
en la que "k" es cualquier base válida. Si hacemos k=x, obtendremos:
Elección de la base
Se denomina logaritmo neperiano o logaritmo natural (ln) al logaritmo en base e; fueron desarrollados por John Napier.
Los logaritmos de base 10, decimales, comunes o vulgares son aquellos en que la base es 10. Fueron inventados y desarrollados por Henry Briggs.
Para representar la operación de logarítmica se escribe la abreviatura Log y como subíndice la base y después el número resultante del que deseamos hallar el logaritmo. Ejemplo:
luego
.
Cuando se sobreentiende la base, se puede omitir.